
3. The Instruction Set 

We now know what the ARM provides by way of memory and registers, and the sort of 
instructions to manipulate them.This chapter describes those instructions in great detail.  

As explained in the previous chapter, all ARM instructions are 32 bits long. Here is a 
typical one:  

10101011100101010010100111101011 

Fortunately, we don't have to write ARM programs using such codes. Instead we use 
assembly language. We saw at the end of Chapter One a few typical ARM mnemonics. 
Usually, mnemonics are followed by one or more operands which are used to completely 
describe the instruction. 

An example mnemonic is ADD, for 'add two registers'. This alone doesn't tell the assembler 
which registers to add and where to put the result. If the left and right hand side of the 
addition are R1 and R2 respectively, and the result is to go in R0, the operand part would 
be written R0,R1,R2. Thus the complete add instruction, in assembler format, would be:  

ADD R0, R1, R2 ;R0 = R1 + R2 

Most ARM mnemonics consist of three letters, e.g. SUB, MOV, STR, STM. Certain 'optional 
extras' may be added to slightly alter the affect of the instruction, leading to mnemonics 
such as ADCNES and SWINE. 

The mnemonics and operand formats for all of the ARM's instructions are described in 
detail in the sections below. At this stage, we don't explain how to create programs, 
assemble and run them. There are two main ways of assembling ARM programs - using 
the assembler built-in to BBC BASIC, or using a dedicated assembler. The former method 
is more convenient for testing short programs, the latter for developing large scale 
projects. Chapter Four covers the use of the BASIC assembler. 

3.1 Condition codes 

The property of conditional execution is common to all ARM instructions, so its 
representation in assembler is described before the syntax of the actual instructions. 

As mentioned in chapter two, there are four bits of condition encoded into an instruction 
word. This allows sixteen possible conditions. If the condition for the current instruction is 
true, the execution goes ahead. If the condition does not hold, the instruction is ignored 
and the next one executed. 

The result flags are altered mainly by the data manipulation instructions. These 
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instructions only affect the flags if you explicitly tell them to. For example, a MOV 
instruction which copies the contents of one register to another. No flags are affected. 
However, the MOVS (move with Set) instruction additionally causes the result flags to be 
set. The way in which each instruction affects the flags is described below. 

To make an instruction conditional, a two-letter suffix is added to the mnemonic. The 
suffixes, and their meanings, are listed below. 

AL Always 

An instruction with this suffix is always executed. To save having to type 'AL' after the 
majority of instructions which are unconditional, the suffix may be omitted in this case. 
Thus ADDAL and ADD mean the same thing: add unconditionally. 

NV Never 

All ARM conditions also have their inverse, so this is the inverse of always. Any 
instruction with this condition will be ignored. Such instructions might be used for 
'padding' or perhaps to use up a (very) small amount of time in a program. 

EQ Equal 

This condition is true if the result flag Z (zero) is set. This might arise after a compare 
instruction where the operands were equal, or in any data instruction which received a 
zero result into the destination. 

NE Not equal 

This is clearly the opposite of EQ, and is true if the Z flag is cleared. If Z is set, and 
instruction with the NE condition will not be executed. 

VS Overflow set 

This condition is true if the result flag V (overflow) is set. Add, subtract and compare 
instructions affect the V flag. 

VC Overflow clear 

The opposite to VS. 

MI Minus 

Instructions with this condition only execute if the N (negative) flag is set. Such a 
condition would occur when the last data operation gave a result which was negative. 
That is, the N flag reflects the state of bit 31 of the result. (All data operations work on 32-
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bit numbers.) 

PL Plus 

This is the opposite to the MI condition and instructions with the PL condition will only 
execute if the N flag is cleared. 

The next four conditions are often used after comparisons of two unsigned numbers. If the 
numbers being compared are n1 and n2, the conditions are n1>=n2, n1<n2, n1>n2 and 
n1<=n2, in the order presented. 

CS Carry set 

This condition is true if the result flag C (carry) is set. The carry flag is affected by 
arithmetic instructions such as ADD, SUB and CMP. It is also altered by operations involving 
the shifting or rotation of operands (data manipulation instructions). 

When used after a compare instruction, CS may be interpreted as 'higher or same', where 
the operands are treated as unsigned 32-bit numbers. For example, if the left hand operand 
of CMP was 5 and the right hand operand was 2, the carry would be set. You can use HS 
instead of CS for this condition. 

CC Carry clear  

This is the inverse condition to CS. After a compare, the CC condition may be interpreted as 
meaning 'lower than', where the operands are again treated as unsigned numbers. An 
synonym for CC is LO. 

HI Higher 

This condition is true if the C flag is set and the Z flag is false. After a compare or subtract, 
this combination may be interpreted as the left hand operand being greater than the right 
hand one, where the operands are treated as unsigned. 

LS Lower or same 

This condition is true if the C flag is cleared or the Z flag is set. After a compare or 
subtract, this combination may be interpreted as the left hand operand being less than or 
equal to the right hand one, where the operands are treated as unsigned. 

The next four conditions have similar interpretations to the previous four, but are used 
when signed numbers have been compared. The difference is that they take into account 
the state of the V (overflow) flag, whereas the unsigned ones don't. 
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Again, the relationships between the two numbers which would cause the condition to be 
true are n1>=n2, n1<n2, n1>n2, n1<=n2. 

GE Greater than or equal 

This is true if N is cleared and V is cleared, or N is set and V is set. 

LT Less than 

This is the opposite to GE and instructions with this condition are executed if N is set and V 
is cleared, or N is cleared and V is set. 

GT Greater than 

This is the same as GE, with the addition that the Z flag must be cleared too. 

LE Less than or equal 

This is the same as LT, and is also true whenever the Z flag is set. 

Note that although the conditions refer to signed and unsigned numbers, the operations 
on the numbers are identical regardless of the type. The only things that change are the 
flags used to determine whether instructions are to be obeyed or not. 

The flags may be set and cleared explicitly by performing operations directly on R15, 
where they are stored.  

3.2 Group one - data manipulation 

This group contains the instructions which do most of the manipulation of data in ARM 
programs. The other groups are concerned with moving data between the processor and 
memory, or changing the flow of control.  

The group comprises sixteen distinct instructions. All have a very similar format with 
respect to the operands they take and the 'optional extras'. We shall describe them 
generically using ADD, then give the detailed operation of each type. 

Assembler format 

ADD has the following format: 

ADD{cond}{S} <dest>, <lhs>, <rhs> 

The parts in curly brackets are optional. Cond is one of the two-letter condition codes listed 
above. If it is omitted, the 'always' condition AL is assumed. The S, if present, causes the 
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instruction to affect the result flags. If there is no S, none of the flags will be changed. For 
example, if an instruction ADDS É yields a result which is negative, then the N flag will be 
set. However, just ADD É will not alter N (or any other flag) regardless of the result. 

After the mnemonic are the three operands. <dest> is the destination, and is the register 
number where the result of the ADD is to be stored. Although the assembler is happy with 
actual numbers here, e.g. 0 for R0, it recognises R0, R1, R2 etc. to stand for the register 
numbers. In addition, you can define a name for a register and use that instead. For 
example, in BBC BASIC you could say:- 

iac = 0 

where iac stands for, say, integer accumulator. Then this can be used in an instruction:- 

ADD iac, iac, #1 

The second operand is the left hand side of the operation. In general, the group one 
instructions act on two values to provide the result. These are referred to as the left and 
right hand sides, implying that the operation determined by the mnemonic would be 
written between them in mathematics. For example, the instruction: 

ADD R0, R1, R2 

has R1 and R2 as its left and right hand sides, and R0 as the result. This is analogous to an 
assignment such as R0=R1+R2 in BASIC, so the operands are sometimes said to be in 
'assignment order'. 

The <lhs> operand is always a register number, like the destination. The <rhs> may either 
be a register, or an immediate operand, or a shifted or rotated register. It is the versatile 
form that the right hand side may take which gives much of the power to these 
instructions. 

If the <rhs> is a simple register number, we obtain instructions such as the first ADD 
example above. In this case, the contents of R1 and R2 are added (as signed, 32-bit 
numbers) and the result stored in R0. As there is no condition after the instruction, the ADD 
instruction will always be executed. Also, because there was no S, the result flags would 
not be affected.  

The three examples below all perform the same ADD operation (if the condition is true): 

ADDNE R0, R0, R2 
ADDS R0, R0, R2 
ADDNES R0, R0, R2 

They all add R2 to R0. The first has a NE condition, so the instruction will only be executed 
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if the Z flag is cleared. If Z is set when the instruction is encountered, it is ignored. The 
second one is unconditional, but has the S option. Thus the N, Z, V and C flags will be 
altered to reflect the result. The last example has the condition and the S, so if Z is cleared, 
the ADD will occur and the flags set accordingly. If Z is set, the ADD will be skipped and the 
flags remain unaltered. 

Immediate operands 

Immediate operands are written as a # followed by a number. For example, to increment 
R0, we would use:  

ADD R0, R0, #1 

Now, as we know, an ARM instruction has 32 bits in which to encode the instruction type, 
condition, operands etc. In group one instructions there are twelve bits available to encode 
immediate operands. Twelve bits of binary can represent numbers in the range 0..4095, or -
2048..+2047 if we treat them as signed. 

The designers of the ARM decided not to use the 12 bits available to them for immediate 
operands in the obvious way just mentioned. Remember that some of the status bits are 
stored in bits 26..31 of R15. If we wanted to store an immediate value there using a group 
one instruction, there's no way we could using the straightforward twelve-bit number 
approach. 

To get around this and related problems, the immediate operand is split into two fields, 
called the position (the top four bits) and the value (stored in the lower eight bits). The 
value is an eight bit number representing 256 possible combinations. The position is a four 
bit field which determines where in the 32-bit word the value lies. Below is a diagram 
showing how the sixteen values of the position determine where the value goes. The bits 
of the value part are shown as 0, 1, 2 etc. 

The way of describing this succinctly is to say that the value is rotated by 2*position bits to 
the right within the 32-bit word. As you can see from the diagram, when position=&03, all 
of the status bits in R15 can be reached.  

b31 b0 Pos 
........................76543210 &00
10........................765432 &01
3210........................7654 &02
543210........................76 &02
76543210........................ &04
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The sixteen immediate shift positions 

When using immediate operands, you don't have to specify the number in terms of 
position and value. You just give the number you want, and the assembler tries to 
generate the appropriate twelve-bit field. If you specify a value which can't be generated, 
such as &101 (which would require a nine -bit value), an error is generated. The ADD 
instruction below adds 65536 (&1000) to R0: 

ADD R0, R0, #&1000 

To get this number, the assembler might use a position value of 8 and value of 1, though 
other combinations could also be used. 

Shifted operands 

If the <rhs> operand is a register, it may be manipulated in various ways before it is used 
in the instruction. The contents of the register aren't altered, just the value given to the 
ALU, as applied to this operation (unless the same register is also used as the result, of 
course). 

The particular operations that may be performed on the <rhs> are various types of shifting 
and rotation. The number of bits by which the register is shifted or rotated may be given as 
an immediate number, or specified in yet another register. 

Shifts and rotates are specified as left or right, logical or arithmetic. A left shift is one 
where the bits, as written on the page, are moved by one or more bits to the left, i.e. 
towards the more significant end. Zero-valued bits are shifted in at the right and the bits at 
the left are lost, except for the final bit to be shifted out, which is stored in the carry flag.  

..76543210...................... &05

....76543210.................... &06

......76543210.................. &07

........76543210................ &08

..........76543210.............. &09

............76543210............ &0A

..............76543210.......... &0B

................76543210........ &0C

..................76543210...... &0D

....................76543210.... &0E

......................76543210.. &0F
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Left shifts by n bits effectively multiply the number by 2n, assuming that no significant bits 
are 'lost' at the top end.  

A right shift is in the opposite direction, the bits moving from the more significant end to 
the lower end, or from left to right on the page. Again the bits shifted out are lost, except 
for the last one which is put into the carry. If the right shift is logical then zeros are shifted 
into the left end. In arithmetic shifts, a copy of bit 31 (i.e. the sign bit) is shifted in. 

Right arithmetic shifts by n bits effectively divide the number by 2n, rounding towards 
minus infinity (like the BASIC INT function). 

A rotate is like a shift except that the bits shifted in to the left (right) end are those which 
are coming out of the right (left) end. 

Here are the types of shifts and rotates which may be used: 

LSL #n Logical shift left immediate 

n is the number of bit positions by which the value is shifted. It has the value 0..31. An LSL 
by one bit may be pictured as below: 

 

After n shifts, n zero bits have been shifted in on the right and the carry is set to bit 32-n of 
the original word. 

Note that if there is no shift specified after the <rhs> register value, LSLÊ#0 is used, which 
has no effect at all. 

ASL #n Arithmetic shift left immediate 

This is a synonym for LSL #n and has an identical effect. 

LSR #n Logical shift right immediate 

n is the number of bit positions by which the value is shifted. It has the value 1..32. An LSR 
by one bit is shown below: 

ARM Assembly Language Programming - Chapter 3 - The Instruction Set

8 of 37



 

After n of these, n zero bits have been shifted in on the left, and the carry flag is set to bit 
n-1 of the original word. 

ASR #n Arithmetic shift right immediate 

n is the number of bit positions by which the value is shifted. It has the value 1..32. An ASR 
by one bit is shown below: 

 

If ' sign' is the original value of bit 31 then after n shifts, n 'sign' bits have been shifted in on 
the left, and the carry flag is set to bit n-1 of the original word. 

ROR #n Rotate right immediate 

n is the number of bit positions to rotate in the range 1..31. A rotate right by one bit is 
shown below: 

 

After n of these rotates, the old bit n is in the bit 0 position; the old bit (n-1) is in bit 31 and 
in the carry flag. 

Note that a rotate left by n positions is the same as a rotate right by (32-n). Also note that 
there is no rotate right by 32 bits. The instruction code which would do this has been 
reserved for rotate right with extend (see below). 

RRX Rotate right one bit with extend 
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This special case of rotate right has a slightly different effect from the usual rotates. There 
is no count; it always rotates by one bit only. The pictorial representation of RRX is: 

 

The old bit 0 is shifted into the carry. The old content of the carry is shifted into bit 31. 

Note that there is no equivalent RLX rotate. However, the same effect may be obtained 
using the instruction: 

ADCS R0,R0,R0 

After this, the carry will contain the old bit 31 of R0, and bit 0 of R0 will contain the old 
carry flag.  

LSL rn Logical shift left by a register. 

ASL rn Arithmetic shift left by a register. 

LSR rn Logical shift right by a register. 

ASR rn Arithmetic shift right by a register. 

ROR rn Rotate right by a register 

This group acts like the immediate shift group, but takes the count from the contents of a 
specified register instead of an immediate value. Only the least significant byte of the 
register is used, so the shift count is in the range 0..255. Of course, only counts in the range 
0..32 are useful anyway. 

We now have the complete syntax of group one instructions: 

ADD{cond}{S} <dest>,<lhs>,<rhs> 

where <dest> and <lhs> are registers, and <rhs> is: 

#<value> or 

<reg> {,<shift>} 

where <value> is a shifted immediate number as explained above, <reg> is a register and 
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<shift> is: 

<shift type> #<shift count> or 
<shift type> <reg> or 
RRX 

where <shift type> is LSL, ASL, LSR, ASR, ROR and <shift count> is in the range 0..32, 
depending on the shift type. 

Here is an example of the ADD instruction using shifted operands: 

ADD R0, R0, R0, LSL #1 ;R0 = R0+2*R0 = 3*R0 

Instruction descriptions 

The foregoing applies to all group one instructions. We now list and explain the individual 
operations in the group. They may be divided into two sub-groups: logical and arithmetic. 
These differ in the way in which the result flags are affected (assuming the S is present in 
the mnemonic). Arithmetic instructions alter N, Z, V and C according to the result of the 
addition, subtraction etc. 

Logical instructions affect N and Z according to the result of the operation, and C 
according to any shifts or rotates that occurred in the <rhs>. For example, the instruction: 

ANDS R0,R1,R2, LSR #1 

will set C from bit 0 of R2. Immediate operands will generally leave the carry unaffected if 
the position value is 0 (i.e. an operand in the range 0..255). For other immediate values, the 
state of C is hard to predict after the instruction, and it is probably best not to assume 
anything about the state of the carry after a logical operation which uses the S option and 
has an immediate operand. 

To summarise the state of the result flags after any logical operation, if the S option was 
not given, then there is no change to the flags. Otherwise:  

? If result is negative (bit 31=1), N is set, otherwise it is cleared.  
? If result is zero, Z is set, otherwise it is cleared.  
? If <rhs> involved a shift or rotate, C is set from this, otherwise it is unaffected by the 

operation.  
? V is unaffected  

AND Logical AND 

The AND instruction produces the bit-wise AND of its operands. The AND of two bits is 1 
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only if both of the bits are 1, as summarised below: 

In the ARM AND instruction, this operation is applied to all 32 bits in the operands. That is, 
bit 0 of the <lhs> is ANDed with bit 0 of the <rhs> and stored in bit 0 of the <dest>, and so 
on. 

Examples: 

ANDS R0, R0, R5 ;Mask wanted bits using R5 
AND R0, R0, #&DF ;Convert character to upper case 

BIC Clear specified bits 

The BIC instruction produces the bit-wise AND of <lhs> and NOT <rhs>. This has the effect of 
clearing the <lhs> bit if the <rhs> bit is set, and leaving the <lhs> bit unaltered otherwise.  

In the ARM BIC instruction, this operation is applied to all bits in the operands. That is, bit 
0 of the <lhs> is ANDed with NOT bit 0 of the <rhs> and stored in bit 0 of the <dest>, and so 
on. 

Examples: 

BICS R0,R0,R5 ;Zero unwanted bits using R5 
BIC R0,R0,#&20 ;Convert to caps by clearing bit 5 

TST Test bits 

The TST instruction performs the AND operation on its <lhs> and <rhs> operands. The 
result is not stored anywhere, but the result flags are set according to the result. As there 
are only two operands, the format of TST is: 

<lhs> <rhs> <lhs> AND <rhs>

0 0 0

0 1 0

1 0 0

1 1 1

<lhs> <rhs> NOT <rhs> <lhs> AND 
NOT <rhs>

0 0 1 0

0 1 0 0

1 0 1 1

1 1 0 0
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TST <lhs>,<rhs> 

Also, as the only purpose of executing a TST is to set the flags according to the result, the 
assembler assumes the S is present whether you specify it or not, i.e. TST always affects the 
flags. 

See the section 'Using R15 in group one instructions' below. 

Examples: 

TST R0,R5 ;Test bits using r5, setting flags 
TST R0,#&20 ;Test case of character in R0 

ORR Logical OR 

The ORR instruction produces the bit-wise OR of its operands. The OR of two bits is 1 if 
either or both of the bits is 1, as summarised below: 

In the ARM ORR instruction, this operation is applied to all bits in the operands. That is, bit 
0 of the <lhs> is ORed with bit 0 of the <rhs> and stored in bit 0 of the <dest>, and so on. 
This instruction is often used to set specific bits in a register without affecting the others. It 
can be regarded as a complementary operation to BIC. 

Examples: 

ORRS R0,R0,R5 ;Set desired bits using R5 
ORR R0,R0,&80000000 ;Set top bit of R0 

EOR Logical exclusive-OR 

The EOR instruction produces the bit-wise exclusive-OR of its operands. The EOR of two 
bits is 1 only if they are different, as summarised below: 

<lhs> <rhs> <lhs> OR <rhs>

0 0 0

0 1 1

1 0 1

1 1 1

<lhs> <rhs> <lhs> EOR <rhs>

0 0 0

0 1 1

1 0 1
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In the ARM EOR instruction, this operation is applied to all bits in the operands. That is, bit 
0 of the <lhs> is EORed with bit 0 of the <rhs> and stored in bit 0 of the <dest>, and so on. 
The EOR instruction is often used to invert the state of certain bits of a register without 
affecting the rest. 

Examples: 

EORS R0,R0,R5 ;Invert bits using R5, setting flags 
EOR R0,R0,#1 ;'Toggle' state of bit 0 

TEQ Test equivalence 

The TEQ instruction performs the EOR operation on its <lhs> and <rhs> operands. The 
result is not stored anywhere, but the result flags are set according to the result. As there 
are only two operands, the format of TEQ is: 

TEQ <lhs>,<rhs> 

Also, as the only purpose of executing a TEQ is to set the flags according to the result, the 
assembler assumes the S is present whether you specify or not, i.e. TEQ always affects the 
flags. 

One use of TEQ is to test if two operands are equal without affecting the state of the C flag, 
as the CMP instruction does (see below). After such an operation, Z=1 if the operands are 
equal, or 0 if not. The second example below illustrates this. 

See the section 'Using R15 in group one instructions' below. 

Examples: 

TEQ R0,R5 ;Test bits using R5, setting flags 
TEQ R0,#0 ;See if R0 = 0. 

MOV Move value 

The MOV instruction transfers its <rhs> operand to the register specified by <dest>. There is 
no <lhs> specified in the instruction, so the assembler format is: 

MOV <dest>,<rhs> 

Examples: 

MOV R0, R0,LSL #2 ;Multiply R0 by four. 
MOVS R0, R1 ;Put R1 in R0, setting flags 

1 1 0
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MOV R1, #&80 ;Set R1 to 128 

MVN Move value 

The MOV instruction transfers the logical NOT of its <rhs> operand to the register specified 
by <dest>. Inverting the <rhs> before transfer enables negative immediate operands to be 
loaded. There is no <lhs> specified in the instruction, so the assembler format is: 

MVN <dest>,<rhs> 

In general, -n = NOT (n-1). This means that to load a negative number, you subtract one 
from its positive value and use that in the MVN. For example, to load the number -128 you 
would do a MVN of 127. 

Examples: 

MVNS R0, R0 ;Invert all bits of R0, setting flags 
MVN R0, #0 ;Set R0 to &FFFFFFFF, i.e. -1 

Descriptions of the arithmetic instructions follow. Here is a summary of how the result 
flags are affected by these instructions. If the S option is not specified, no change takes 
place. Otherwise: 

If result is negative (bit 31=1), N is set, otherwise it is cleared.  

If result is zero, Z is set, otherwise it is cleared. 

If the operation generated a carry, C is set, otherwise it is cleared. 

If the operation generated an overflow, V is set, otherwise it is cleared.  

Note that if C=1 after an ADDS, the implication is that a carry was generated, i.e. the 
addition overflowed into bit 32. This does not mean that the result is wrong. For example, 
adding -1 to 10 will produce the following: 

A carry is generated, but the result we obtain is the desired one, i.e. 9. The overflow flag 
(see below) is used for detecting errors in the arithmetic. In this case, V=0 after the 
operation, implying no overflow. 

00000000000000000000000000001010

+ 11111111111111111111111111111111

00000000000000000000000000001001
1
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The state of the carry after a SUBS is the opposite to that after an ADDS. If C=1, no borrow 
was generated during the subtract. If C=0, a borrow was required. Note that by this 
definition, borrow = NOT carry, so the summary of the flags' states above is correct. 

The precise definition of the overflow state is the exclusive-OR of the carries from bits 30 
and 31 during the add or subtract operation. What this means in real terms is that if the V 
flag is set, the result is too large to fit in a single 32-bit word. In this case, the sign of the 
result will be wrong, which is why the signed condition codes take the state of the V flag 
into account. 

ADD Addition 

This instruction adds the <lhs> operand to the <rhs> operand, storing the result in <dest>. 
The addition is a thirty-two bit signed operation, though if the operands are treated as 
unsigned numbers, then the result can be too. 

Examples: 

ADD R0,R0,#1 ;Increment R0 
ADD R0,R0,R0,LSL#2 ;Multiple R0 by 5 
ADDS R2,R2,R7 ;Add result; check for overflow 

ADC Addition with carry 

The add with carry operation is very similar to ADD, with the difference that the carry flag 
is added too. Whereas the function of ADD can be written: 

<dest> = <lhs> + <rhs> 

we must add an extra part for ADC: 

<dest> = <lhs> + <rhs> + <carry> 

where <carry> is 0 if C is cleared and 1 if it is set. The purpose of ADC is to allow multi-
word addition to take place, as the example illustrates. 

Example: 

;Add the 64-bit number in R2,R3 to that in R0,R1 
ADDS R0,R0,R2 ;Add the lower words, getting carry 
ADC R1,R1,R3 ;Add upper words, using carrySUB Subtract 

This instruction subtracts the <rhs> operand from the <lhs> operand, storing the result in 
<dest>. The subtraction is a thirty-two bit signed operation. 

Examples: 
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SUB R0,R0,#1 ;Decrement R0  
SUB R0,R0,R0,ASR#2 ;Multiply R0 by 3/4 (R0=R0-R0/4) 

SBC Subtract with carry 

This has the same relationship to SUB as ADC has to ADD. The operation may be written: 

<dest> = <lhs> - <rhs> - NOT <carry> 

Notice that the carry is inverted because the C flag is cleared by a subtract that needed a 
borrow and set by one that didn't. As long as multi-word subtracts are performed using 
SUBS for the lowest word and SBCS for subsequent ones, the way in which the carry is set 
shouldn't concern the programmer. 

Example: 

;Subtract the 64-bit number in R2,R3 from that in R0,R1  
SUBS R0,R0,R2 ;Sub the lower words, getting borrow  
SBC R1,R1,R3 ;Sub upper words, using borrow 

RSB Reverse subtract 

This instruction performs a subtract without carry, but reverses the order in which its 
operands are subtracted. The instruction: 

RSB <dest>,<lhs>,<rhs> 

performs the operation: 

<dest> = <rhs> - <lhs> 

The instruction is provided so that the full power of the <rhs> operand (register, 
immediate, shifted register) may be used on either side of a subtraction. For example, in 
order to obtain the result 1-R1 in the register R0, you would have to use: 

MVN R0,R1 ;get NOT (R1) = -R1-1  
ADD R0,R0,#2 ;get -R1-1+2 = 1-R1 

However, using RSB this could be written: 

RSB R0, R1, #1 ;R0 = 1 - R0 

In more complex examples, extra registers might be needed to hold temporary results if 
subtraction could only operate in one direction. 

Example: 

;Multiply R0 by 7  
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RSB R0, R0, R0, ASL #3 ;Get 8*R0-R0 = 7*R0 

RSC Reverse subtract with carry 

This is the 'with carry' version of RSB. Its operation is: 

<dest> = <rhs> - <lhs> - NOT <carry> 

It is used to perform multiple-word reversed subtracts. 

Example 

;Obtain &100000000-R0,R1 in R0,R1 
RSBS R0,R0,#0 ;Sub the lower words, getting borrow 
RSC R1, R1,#1 ;Sub the upper words 

CMP Compare 

The CMP instruction is used to compare two numbers. It does this by subtracting one from 
the other, and setting the status flags according to the result. Like TEQ and TST, CMP doesn't 
actually store the result anywhere. Its format is: 

CMP <lhs>, <rhs> 

Also like TST and TEQ it doesn't require the S option to be set, as CMP without setting the 
flags wouldn't do anything at all. 

After a CMP, the various conditions can be used to execute instructions according to the 
relationship between the integers. Note that the two operands being compared may be 
regarded as either signed (two's complement) or unsigned quantities, depending on which 
of the conditions is used.  

See the section 'Using R15 in group one instructions' below. 

Examples: 

CMP R0,#&100 ;Check R0 takes a single byte 
CMP R0,R1 ;Get greater of R1, R0 in R0 
MOVLT R0,R1 

CMN Compare negative 

The CMN instruction compares two numbers, but negates the right hand side before 
performing the comparison. The 'subtraction' performed is therefore <lhs>--<rhs>, or 
simply <lhs>+<rhs>. The main use of CMN is in comparing a register with a small negative 
immediate number, which would not otherwise be possible without loading the number 
into a register (using MVN). For example, a comparison with -1 would require 
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MVN R1,#0 ;Get -1 in R1 
CMP R0,R1 ;Do the comparison 

which uses two instructions and an auxiliary register, compared to this: 

CMN R0,#1 ;Compare R0 with -1 

Note that whereas MVN is 'move NOT ', CMN is 'compare negative', so there is a slight 
difference in the way <rhs> is altered before being used in the operation. 

See the section 'Using R15 in group one instructions' below. 

Example 

CMN R0,#256 ;Make sure R0 >= -256 
MVNLT R0,#255 

Using R15 in group one instructions 

As we know, R15 is a general-purpose register, and as such may be cited in any situation 
where a register is required as an operand. However, it is also used for storing both the 
program counter and the status register. Because of this, there are some special rules 
which have to be obeyed when you use R15. These are described in this section. 

The first rule concerns how much of R15 is 'visible' when it is used as one of the source 
operands, i.e. in an <rhs> or <lhs> position. Simply stated, it is: 

? if <lhs> is R15 then only bits 2..25 (the PC) are visible  
? if <rhs> is R15 then all bits 0..31 are visible  

So, in the instruction: 

ADD R0,R15,#128 

the result of adding 128 to the PC is stored in R0. The eight status bits of R15 are seen as 
zeros by the ALU, and so they don't figure in the addition. Remember also that the value 
of the PC that is presented to the ALU during the addition is eight greater than the address 
of the ADD itself, because of pipelining (this is described in more detail below). 

In the instruction 

MOV R0,R15,ROR #26 

all 32 bits of R15 are used, as this time the register is being used in an <rhs> position. The 
effect of this instruction is to obtain the eight status bits in the least significant byte of R0. 
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The second rule concerns using R15 as the destination operand. In the instruction 
descriptions above we stated that (if S is present) the status bits N, Z, C and C are 
determined by the outcome of the instruction. For example, a result of zero would cause 
the Z bit to be set. 

In the cases when R15 itself is the destination register, this behaviour changes. If S is not 
given in the instruction, only the PC bits of R15 are affected, as usual. So the instruction 

ADD R15,R15,R0 

adds some displacement which is stored in R0 to the program counter, leaving the status 
unaffected. 

If S is present in the instruction, and the instruction isn't one of TST, TEQ, CMP, or CMN (which 
are explained below), the status bits which are allowed to be altered in the current 
processor mode are overwritten directly by the result. (As opposed to the status of the 
result.) An example should make this clear. To explicitly set the carry flag (bit 29 of R15) 
we might use: 

ORRS R15,R15,#&20000000 

Now, as the second R15 is in a <lhs> position, the status bits are presented as zeros to the 
ALU (because of the first rule described above). Thus the value written into the status 
register is (in binary) 001000...00. In fact, in user modes, only the top four bits may be 
affected (i.e. the interrupt masks and processor mode bits can't be altered in user mode). 

The example above has the (usually) unfortunate side effect of skipping the two 
instructions which follow the ORR. This is, as usual, due to pipelining. The R15 value which 
is transferred into the ALU holds the address of the third instruction after the current one, 
thus the intervening two are never executed. (They are pre-fetched into pipeline, but 
whenever the PC is altered, the ARM has to disregard the current pre-fetched 
instructions.) 

To overcome this there is a special way of writing to the status bits, and only the status 
bits, of R15. It involves using the four instructions which don't usually have a destination 
register: TST, TEQ,, CMP, and CMN. As we know, these usually affect the flags from the result 
of the operation because they have an implicit S option built-in. Also, usually the 
assembler makes the <dest> part of the instruction code R0 (it still has this field in the 
instruction, even if it isn't given in the assembly language). 

Now, if the <dest> field of one of these instructions is made R15 instead, a useful thing 
happens. The status bits are updated from the result of the operation (the AND, EOR, SUB 
orADD as appropriate), but the PC part remains unaltered. 
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The problem is how to make the assembler use R15 in the <dest> field instead of R0. This 
is done by adding a P to the instruction. To give a concrete example, we will show how the 
carry flag can be set without skipping over the next two instructions:  

TEQP R15,#&20000000 

This works as follows. The R15 is a <lhs> so the status bits appear as zeros to the ALU. 
Thus EORing the mask for the carry flag with this results in that bit being set when the 
result is transferred to R15. The rest of the status register (or at least the bits which are 
alterable) will be cleared. 

Setting and clearing only selected status bits while leaving the rest alone takes a bit more 
effort. First the current value of the bits must be obtained. Then the appropriate masking is 
performed and the result stored in R15. For example, to clear the overflow flag (bit 28) 
while preserving the rest, something like this is needed: 

MOV tmp,R15 ;Get the status 
BIC tmp,tmp,#1<<28;Clear bit 28 
TEQP R15,tmp ;Store the new status 

Finally, we have to say something about performing arithmetic on R15 in order to alter the 
execution path of the program. As we will see later in this chapter, there is a special B (for 
Branch) instruction, which causes the PC to take on a new value, This causes a jump to 
another part of the program, similar to the BASIC GOTO statement. However, by changing 
the value of R15 using group one instructions such as ADD, we can achieve more versatile 
control, for example emulating the BASIC ON..GOTO statement. 

The important thing to bear in mind when dealing with the PC has already been 
mentioned once or twice: the effect of pipelining. The value obtained when R15 is used as 
an operand is 8 bytes, or 2 words, greater than the address of the current instruction. Thus 
if the instruction 

MOV R0,R15 

was located at address &8000, then the value loaded into R15 would be &8008. Chapters 
Five and Six contain several examples of the use of R15 where pipelining is taken into 
account. 

Group One A 

There is a small class of instructions which is similar in form to the group one instructions, 
but doesn't belong in that group. These are the multiply instructions, whose form bears a 
similarity to the simplest form of group one instructions.  

Two distinct operations make up this group, multiply and multiply with accumulate. The 
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formats are: 

MUL{cond}{S} <dest,<lhs>,<rhs> 
MLA{cond}{S} <dest>,<lhs>,<rhs>,<add> 

All operands are simple registers; there are no immediate operands or shifted registers. 
MUL multiplies <lhs> by <rhs> and stores the result in <dest>. MLA does the same, but 
adds register <add> before storing the result. 

You must obey certain restrictions on the operands when using these instructions. The 
registers used for <rhs> and <dest> must be different. Additionally, you should not use 
R15 as a destination, as this would produce a meaningless result. In fact, R15 is protected 
from modification by the multiply instructions. There are no other restrictions.  

If the S option is specified, the flags are affected as follows. The N and Z flags are set to 
reflect the status of the result register, the same as the rest of the group one instructions. 
The overflow flag is unaltered, and the carry flag is undefined. 

You can regard the operands of the multiply instructions as unsigned or as two's 
complement signed numbers. In both cases, the correct results will be obtained. 

Example: 

MUL R0,R1,R2 

Summary of group one 

The group one instructions have the following form: 

<op1>{cond}{S}{P} <dest>,<lhs>,<rhs> 
<op2>{cond}{S}{P} <dest>,<rhs> 
<op3>{cond}{S}{P} <lhs>,<rhs> 

where <op1> is one of ADD, ADC, AND, BIC, EOR, ORR, RSB, RSC, SBC, SUB, <op2> is one of MOV, MVN, 
and <op3> is one of TEQ, TST,CMN, CMP. 

The following <op3>s have no <dest> field: CMN, CMP, TEQ, TST. They allow the use of the {P} 
option to set the <dest> field in the machine code to R15 instead of the default R0. 

The following <op2>s have no <lhs> field: MOV, MVN. 

? <dest> and <lhs> are registers.  
? <rhs> is #<expression> where <expression> is a 12-bit shifted immediate operand, or 
? <register>, or  
? <register>, <shift type> <count> where <shift type> is LSL, ASL, ASR, LSR, ROR 
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and where <count> is #<expression> or <register> where <expression> is five-bit 
unsigned value, or  

? <register>, RRX  

3.3 Group two - load and store 

We turn now to the first set of instructions concerned with getting data in and out of the 
processor. There are only two basic instructions in this category. LDR loads a register from 
a specified location and STR saves a register. 

As with group one, there are several options which make the instructions very versatile. 
As the main difference between LDR and STR is the direction in which the data is 
transferred (i.e. to or from the processor), we will explain only one of the instructions in 
detail - STR. Notes about LDR follow this description. 

STR Store a word or byte 

Addressing modes 

When storing data into memory, you have to be able to specify the desired location. There 
are two main ways of giving the address, called addressing modes. These are known as 
pre-indexed and post-indexed addressing. 

Pre-indexed addressing 

Pre-indexed addressing is specified as below: 

STR{cond} <srce>,[<base>{,<offset>}] 

<srce> is the register from which the data is to be transferred to memory. <base> is a 
register containing the base address of memory location required. <offset> is an optional 
number which is added to the address before the data is stored. So the address actually 
used to store the <srce> data is <base>+<offset> 

Offset formats 

The <offset> is specified in one of two ways. It may be an immediate number in the range 
0 to 4095, or a (possibly) shifted register. For example:  

STR R0,[R1,#20] 

will store R0 at byte address R1+20. The offset may be specified as negative, in which case 
it is subtracted from the base address. An example is: 

STR R0,[R1,#-200] 
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which stores R0 at R1-200. 

(Note for alert readers. The immediate offset is stored as a 12-bit magnitude plus one bit 
'direction', not as a 13-bit two's complement number. Therefore the offset range really is -
4095 to +4095, not -4096 to +4095, as you might expect.) 

If the offset is specified as a register, it has the same syntax as the <rhs> of group one 
instructions. That is, it could be a simple register contents, or the contents of a register 
shifted or rotated by an immediate number. 

Note: the offset register can only have an immediate shift applied to it. In this respect, the 
offset differs from the <rhs> of group one instructions. The latter can also have a shift 
which is stored in a register. 

This example stores R0 in the address given by R1+R2*4: 

STR R0,[R1,R2,LSL#2] 

Again, the offset may be negative as this example illustrates:  

STR R0,[R1,-R2,LSL#3] 

Write-back 

Quite frequently, once the address has been calculated, it is convenient to update the base 
register from it. This enables it to be used in the next instruction. This is useful when 
stepping through memory at a fixed offset. By adding a ! to the end of the instruction, you 
can force the base register to be updated from the <base>+<offset> calculation. An 
example is: 

STR R0,[R1,#-16]! 

This will store R0 at address R1-16, and then perform an automatic: 

SUB R1,R1,#16 

which, because of the way in which the ARM works, does not require any extra time.  

Byte and word operations 

All of the examples of STR we have seen so far have assumed that the final address is on a 
word boundary, i.e. is a multiple of 4. This is a constraint that you must obey when using 
the STR instruction. However, it is possible to store single bytes which may be located at 
any address. The byte form of STR is obtained by adding B at the end. For example: 
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STRB R0,[R1,#1]! 

will store the least significant byte of R0 at address R1+1 and store this address in R1 (as ! 
is used). 

Post-indexed addressing 

The second addressing mode that STR and LDR use is called post-indexed addressing. In 
this mode, the <offset> isn't added to the <base> until after the instruction has executed. 
The general format of a post-indexed STR is: 

STR{cond} <srce>,[<base>],<offset> 

The <base> and <offset> operands have the same format as pre-indexed addressing. Note 
though that the <offset> is always present, and write-back always occurs (so no ! is 
needed). Thus the instruction: 

STRB R0,[R1],R2 

will save the least significant byte of R0 at address R1. Then R1 is set to R1+R2. The 
<offset> is used only to update the <base> register at the end of the instruction. An 
example with an immediate <offset> is: 

STR R2,[R4],#-16 

which stores R2 at the address held in R4, then decrements R4 by 4 words. 

LDR Load a word or byte 

The LDR instruction is similar in most respects to STR. The main difference is, of course, that 
the register operand is loaded from the given address, instead of saved to it. 

The addressing modes are identical, and the B option to load a single byte (padded with 
zeros) into the least significant byte of the register is provided. 

When an attempt is made to LDR a word from a non-word boundary, special corrective 
action is taken. If the load address is addr, then the word at addr AND &3FFFFFFC is loaded. 
That is, the two least significant bits of the address are set to zero, and the contents of that 
word address are accessed. Then, the register is rotated right by (addr MOD 4)*8 bits. To 
see why this is done, consider the following example. Suppose the contents of address 
&1000 is &76543210. The table below shows the contents of R0 after a word load from 
various addresses: 

Address R0 
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After the rotation, at least the least significant byte of R0 contains the correct value. When 
addr is &1000, it is a word-boundary load and the complete word is as expected. When 
addr is &1001, the first three bytes are as expected, but the last byte is the contents of 
&1000, rather than the desired &1004. This (at first sight) odd behaviour facilitates writing 
code to perform word loads on arbitrary byte boundaries. It also makes the 
implementation of extra hardware to perform correct non-word-aligned loads easier. 

Note that LDR and STR will never affect the status bits, even if <dest> or <base> is R15. Also, 
if R15 is used as the base register, pipelining means that the value used will be eight bytes 
higher than the address of the instruction. This is taken into account automatically when 
PC-relative addressing is used. 

PC relative addressing 

The assembler will accept a special form of pre-indexed address in the LDR instruction, 
which is simply:  

LDR <dest>,<expression> 

where <expression> yields an address. In this case, the instruction generated will use R15 
(i.e. the program counter) as the base register, and calculate the immediate offset 
automatically. If the address given is not in the correct range (-4095 to +4095) from the 
instruction, an error is given. 

An example of this form of instruction is:  

LDR R0,default 

(We assume that default is a label in the program. Labels are described more fully in the 
next chapter, but for now suffice is to say that they are set to the address of the point in the 
program where they are defined.) 

As the assembler knows the value of the PC when the program is executed, it can calculate 
the immediate offset required to access the location default. This must be within the range 
-4095 to +4095 of course. This form of addressing is used frequently to access constants 
embedded in the program. 

Summary of LDR and STR 

&1000 &76543210

&1001 &10765432

&1002 &32107654

&1003 &54321076
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Below is a summary of the syntax for the register load and save instructions.  

<op>{cond}{B} <dest>,[<base>{,#<imm>}]{!} 
<op>{cond}{B} <dest>,[<base>,{+|-}<off>{,<shift>}]{!} 
<op>{cond}{B} <dest>,<expression> 
<op>{cond}{B} <dest>,[<base>],#<imm> 
<op>{cond}{B} <dest>,[<base>],{+|-}<off>{,<shift>} 

Although we haven't used any explicit examples, it is implicit given the regularity of the 
ARM instruction set that any LDR or STR instruction may be made conditional by adding 
the two letter code. Any B option follows this. 

<op> means LDR or STR. <imm> means an immediate value between -4095 and +4095. {+|-} 
means an optional + or - sign may be present. <off> is the offset register number. <base> is 
a base register, and <shift> refers to the standard immediate (but not register shift) 
described in the section above on group one instructions. 

Note that the case of: 

STR R0,label 

is covered. Although the assembler will accept this and generate the appropriate PC-
relative instruction, its use implies that the program is writing over or near its code. 
Generally this is not advisable because (a) it may lead inadvertently to over-writing the 
program with dire consequences, and (b) if the program is to be placed in ROM, it will 
cease to function, as ROMs are generally read-only devices, on the whole. 

3.4 Group three - multiple load and store 

The previous instruction group was eminently suitable for transferring single data items in 
and out of the ARM processor. However, circumstances often arise where several registers 
need to be saved (or loaded) at once. For example, a program might need to save the 
contents of R1 to R12 while these registers are used for some calculation, then load them 
back when the result has been obtained. The sequence: 

STR R1,[R0],#4 
STR R2,[R0],#4 
STR R3,[R0],#4 
STR R4,[R0],#4 
STR R5,[R0],#4 
STR R6,[R0],#4 
STR R7,[R0],#4 
STR R8,[R0],#4 
STR R9,[R0],#4 
STR R10,[R0],#4 
STR R11,[R0],#4 
STR R12,[R0],#4 
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to save them is inefficient in terms of both space and time. The LDM (load multiple) and STM 
(store multiple) instructions are designed to perform tasks such as the one above in an 
efficient manner. 

As with LDR and STR we will describe one variant in detail, followed by notes on the 
differences in the other. First though, a word about stacks. 

About stacks 

LDM and STM are frequently used to store registers on, and retrieve them from, a stack. A 
stack is an area of memory which 'grows' in one direction as items are added to it, and 
'shrinks' as they are taken off. Items are always removed from the stack in the reverse 
order to which they are added. 

The term 'stack' comes from an analogy with stacks of plates that you see in self-service 
restaurants. Plates are added to the top, then removed in the opposite order. Another 
name for a stack is a last-in, first-out structure or 'LIFO'. 

Computing stacks have a value associated with them called the stack pointer, or SP. The 
SP holds the address of the next item to be added to (pushed onto) or removed (pulled) 
from the stack. In an ARM program, the SP will almost invariably be stored in one of the 
general-purpose registers. Usually, a high-numbered register, e.g. R12 or R13 is used. The 
Acorn ARM Calling Standard, for example, specifies R12, whereas BASIC uses R13. 

Here is a pictorial representation of two items being pushed onto a stack.  

 

Before the items are pushed, SP points to (holds the address of) the previous item that was 
pushed. After two new words have been pushed, the stack pointer points to the second of 
these, and the first word pushed lies 'underneath' it. 

Stacks on the ARM have two attributes which must be decided on before any STM/LDM 
instructions are used. The attributes must be used consistently in any further operation on 
the stack. 

The first attribute is whether the stack is 'full' or 'empty'. A full stack is one in which the SP 
points to the last item pushed (like the example above). An empty stack is where the stack 
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pointer holds the address of the empty slot where the next item will be pushed. 

Secondly, a stack is said to be ascending or descending. An ascending stack is one where 
the SP is incremented when items are pushed and decremented when items are pulled. A 
descending stack grows and shrinks in the opposite direction. Given the direction of 
growth in the example above,the stack can be seen to be descending. 

The above-mentioned Acorn Calling Standard (which defines the way in which separate 
programs may communicate) specifies a full, descending stack, and BASIC also uses one. 

STM Store multiple registers 

In the context of what has just been said, STM is the 'push items onto stack' instruction. 
Although it has other uses, most STMs are stack oriented. 

The general form of the STM instruction is:  

STM<type> <base>{!}, <registers> 

We have omitted the {cond} for clarity, but as usual a condition code may be included 
immediately after the mnemonic. The <type> consists of two letters which determine the 
Full/Empty, Ascending/Descending mode of the stack. The first letter is F or E; the second is 
A or D. 

The <base> register is the stack pointer. As with LDR/STR, the ! option will cause write-back 
if present. <registers> is a list of the registers which we want to push. It is specified as a 
list of register numbers separated by commas, enclosed in braces (curly brackets). You can 
also specify a list of registers using a - sign, e.g. R0-R4 is shorthand for R0,R1,R2,R3,R4.  

Our first example of an STM instruction is: 

STMED R13!,{R1,R2,R5} 

This will save the three registers R1, R2 and R5 using R13 as the SP. As write-back is 
specified, R13 will be updated by subtracting 3*4 (12) from its original value (subtracting 
as we are using a descending stack). Because we have specified the E option, the stack is 
empty, i.e. after the STM, R13 will hold the address of the next word to be pushed. The 
address of the last word pushed is R13+4. 

When using STM and LDM for stack operations, you will almost invariably use the ! option, 
as the stack pointer has to be updated. Exceptions are when you want to obtain a copy of 
an item without pulling it, and when you need to store a result in a 'slot' which has been 
created for it on the stack. Both these techniques are used in the 'find substring' example of 
Chapter Six. 
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More on FD etc. 

The ascending/descending mode of a stack is analogous to positive and negative offsets of 
the previous section. During an STM, if the stack is descending, a negative offset of 4 is 
used. If the stack is ascending, a positive offset of 4 is used (for each register). 

Similarly, the difference between what the ARM does for full and empty stacks during an 
STM is analogous to the pre- and post-indexed addressing modes of the previous section. 
Consider a descending stack. An empty stack's pointer is post-decremented when an item 
is pushed. That is, the register to be pushed is stored at the current location, then the stack 
pointer is decremented (by a fixed offset of 4), ready for the next one. A full stack is pre-
decremented on a push: first SP is decremented by 4, then the register is stored there. This 
is repeated for each register in the list.  

Direction of storage 

Below is an STM which stores all of the registers at the location pointed to by R13, but 
without affecting R13 (no write-back). 

STMFD R13,{R0-R15} 

Although the stack is an FD one, because there is no write -back, R13 is not actually 
decremented. Thus after the operation, R13 points to some previous item, and below that 
in memory are the sixteen pushed words. 

Now, as R0 appears first in the list, you might expect that to be the first register to be 
pushed, and to be stored at address R13-4. Well, you would be wrong. Firstly, the order in 
which the register list appears has no bearing at all on the order in which things are done. 
All the assembler is looking for is a mention of a register's name: it can appear anywhere 
within the braces. Secondly, the registers are always stored in the same order in memory, 
whether the stack is ascending or descending, full or empty.  

When you push one or more registers, the ARM stores the lowest-numbered one at the 
lowest address, the next highest -numbered one at the next address and so on. This always 
occurs. For ascending stacks, the location pointer is updated, the first register stored (or 
vice versa for empty stacks) and so on for each register. Finally, if write-back is enabled, 
the stack pointer is updated by the location pointer. 

For descending stacks, the final value of the stack pointer is calculated first. Then the 
registers are stored in increasing memory locations, and finally the stack pointer is 
updated if necessary. 

We go into this detail because if you need to access pushed registers directly from the 
stack, it is important to know where they are! 
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Saving the stack pointer and PC 

In the previous example, the stack pointer (R13) was one of the registers pushed. As there 
was no write-back, the value of R13 remained constant throughout the operation, so there 
is no question of what value was actually stored. However, in cases where write-back is 
enabled, the SP changes value at some time during the instruction, so the 'before' or 'after' 
version might be saved. 

The rule which determines which version of the base register is saved is quite simple. If 
the stack pointer is the lowest-numbered one in the list, then the value stored is the 
original, unaltered one. Otherwise, the written-back value of the base register is that stored 
on the stack. Since we have standardised on R13 for the stack pointer, it is almost always 
the new value which is stored. 

When R15 is included in the register list, all 32-bits are stored, i.e. both the PC and status 
register parts. 

LDM Load multiple registers 

LDM perform the stack 'pull' (or pop as it is also known) operation. It is very similar in form 
to the STM instruction: 

LDM<type> <base>{!},<registers>{^} 

As before, the <type> gives the direction and type of the stack. When pulling registers, you 
must use the same type of stack as when they were pushed, otherwise the wrong values 
will be loaded. <base>, ! and <registers> are all as STM. 

The only extra 'twiddle' provided by LDM is the ^ which may appear at the end. If present, 
this indicates that if R15 is in the register list, then all 32-bits are to be updated from the 
value pulled from the stack. If there is no ^ in the instruction, then if R15 is pulled, only the 
PC portion (bits 2-25) are affected. The status bits of R15 will remain unaltered by the 
operation. 

This enables you to decide whether subroutines (which are explained in detail in the next 
section) preserve the status flags or use them to return results. If you want the routine to 
preserve the flags, then use ^ to restore them from the stack. Otherwise omit it, and the 
flags will retain their previous contents. 

Loading the stack pointer and PC 

If the register being used as the stack pointer is in the LDM register list, the register's value 
after the instruction is always that which was loaded, irrespective of where it appeared in 
the list, and whether write-back was specified. 
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If R15 appears in the list, then the ^ option is used to determine whether the PC alone or 
PC plus status register is loaded. This is described above.  

An alternative notation 

Not all of the uses for LDM and STM involve stacks. In these situations, the full/empty, 
ascending/descending view of the operations may not be the most suitable. The assembler 
recognises an alternative set of option letters, which in fact mirrors more closely what the 
ARM instructions really do.  

The alternative letter pairs are I/D for increment/decrement, and B/A for before/after. Thus 
the instruction: 

STMIA R0!,{R1,R2} 

stores R1 and R2 at the address in R0. For each store, a post-increment (Increment After) is 
performed, and the new value (R0+8) is written back. Similarly: 

LDMDA R0!,{R1,R3,R4} 

loads the three registers specified, decrementing the address after each one. The write-
back option means that R0 will be decremented by 12. Remember that registers are always 
stored lowest at lowest address, so in terms of the original R0, the registers in the list will 
be loaded from addresses R0-8, R0-4 and R0-0 respectively. 

The table below shows the equivalents for two types of notation: 

The increment/decrement type notation shows how push and pull operations for a given 
type of stack are exact opposites. 

Summary of LDM/STM 

LDM{cond}<type1> <base>{!},<registers>{^} 

Full/Empty Decrement/Increment 
equivalent 

STMFD STMDB
LDMFD LDMIA
STMFA STMIB
LDMFA LDMDA
STMED STMDA
LDMED LDMIB
STMEA STMIA

LDMEA LDMDB
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LDM{cond}<type2> <base>{!},<registers>{^} 
STM{cond}<type1> <base>{!},<registers>{^} 
STM{cond}<type2> <base>{!},<registers>{^} 

where: 

cond is defined at the start of this chapter. 

<type1> is F|E A|D 
<type2> isI|D B|A 
<base> is a register 

<registers> is open-brace comma-separated-list close-brace 

Notice that ^ may be used in STM as well as LDM. Its use in STM is only relevant to non-user 
modes, and as such is described in Chapter Seven. 

3.5 Group four - branch 

In theory, the group one data instructions could be used to make any change to the PC 
required by a program. For example, an ADD to R15 could be used to move the PC on by 
some amount, causing a jump forward in the program. However, there are limits to what 
you can achieve conveniently using these general-purpose instructions. The branch group 
provides the ability to locate any point in the program with a single operation.  

The simple branch 

Group four consists of just two variants of the branch instruction. There are (refreshingly 
perhaps) no alternative operand formats or optional extras. The basic instruction is a 
simple branch, whose mnemonic is just B. The format of the instruction is: 

B{cond} <expression> 

The optional condition, when present, makes the mnemonic a more normal-looking three-
letter one, e.g. BNE, BCC. If you prefer three letters, you could always express the 
unconditional branch as BAL, though the assembler would be happy with just B. 

<expression> is the address within the program to which you wish to transfer control. 
Usually, it is just a label which is defined elsewhere in the program. For example, a simple 
counting loop would be implemented thus:  

MOV R0,#0 ;Init the count to zero 
.LOOP MOVS R1,R1,LSR#1 ;Get next 1 bit in Carry  
ADC R0,#0 ;Add it to count 
BNE LOOP ;Loop if more to do 

ARM Assembly Language Programming - Chapter 3 - The Instruction Set

33 of 37



The 'program' counts the number of 1 bits in R1 by shifting them a bit at a time into the 
carry flag and adding the carry to R0. If the MOV left a non-zero result in R1, the branch 
causes the operation to repeat (note that the ADC doesn't affect the status as it has no S 
option). 

Offsets and pipelining 

When the assembler converts a branch instruction into the appropriate binary code, it 
calculates the offset from the current instruction to the destination address. The offset is 
encoded in the instruction word as a 24-bit word address, like the PC in R15. This is 
treated as a signed number, and when a branch is executed the offset is added to the 
current PC to reach the destination. 

Calculation of the offset is a little more involved than you might at first suspect - once 
again due to pipelining. Suppose the location of a branch instruction is &1230, and the 
destination label is at address &1288. At first sight it appears the byte offset is &1288-
&1230 = &58 bytes or &16 words. This is indeed the difference between the addresses. 
However, by the time the ARM gets round to executing an instruction, the PC has already 
moved two instructions further on. 

Given the presence of pipelining, you can see that by the time the ARM starts to execute 
the branch at &1230, the PC contains &1238, i.e. the address of two instructions along. It is 
this address from which the offset to the destination must be calculated. To complete the 
example, the assembler adds &8 to &1230 to obtain &1238. It then subtracts this from the 
destination address of &1288 to obtain an offset of &50 bytes or &14 words, which is the 
number actually encoded in the instruction. Luckily you don't have to think about this 
when using the B instruction. 

Branch with link 

The single variant on the branch theme is the option to perform a link operation before the 
branch is executed. This simply means storing the current value of R15 in R14 before the 
branch is taken, so that the program has some way of returning there. Branch with link, BL, 
is used to implement subroutines, and replaces the more usual BSR (branch to subroutine) 
and JSR (jump to subroutine) instructions found on some computers. 

Most processors implement BSR by saving the return address on the stack. Since ARM has 
no dedicated stack, it can't do this. Instead it copies R15 into R14. Then, if the called 
routine needs to use R14 for something, it can save it on the stack explicitly. The ARM 
method has the advantage that subroutines which don't need to save R14 can be called 
return very quickly. The disadvantage is that all other routines have the overhead of 
explicitly saving R14. 
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The address that ARM saves in R14 is that of the instruction immediately following the BL. 
(Given pipelining, it should be the one after that, but the processor automatically adjusts 
the value saved.) So, to return from a subroutine, the program simply has to move R14 
back into R15: 

MOVS R15,R14 

The version shown will restore the original flags too, automatically making the subroutine 
preserve them. If some result was to be passed back in the status register, a MOV without S 
could be used. This would only transfer the PC portion of R14 back to R15, enabling the 
subroutine to pass status information back in the flags.  

BL has the expected format: 

BL{cond} <expression> 

3.6 Group five - software interrupt 

The final group is the most simple, and the most complex. It is very simple because it 
contains just one instruction, SWI, whose assembler format has absolutely no variants or 
options. 

The general form of SWI is: 

SWI{cond} <expression> 

It is complex because depending on <expression>, SWI will perform tasks as disparate as 
displaying characters on the screen, setting the auto-repeat speed of the keyboard and 
loading a file from the disc. 

SWI is the user's access to the operating system of the computer. When a SWI is executed, 
the CPU enters supervisor mode, saves the return address in R14_SVC, and jumps to 
location 8. From here, the operating system takes over. The way in which the SWI is used 
depends on <expression>. This is encoded as a 24-bit field in the instruction. The 
operating system can examine the instruction using, for example:. 

STMFD R13!,{R0-R12} ;Save user's registers 
BIC R14,R14,#&FC000003 ;Mask status bits 
LDR R13,[R14,#-4] ;Load SWI instruction 

to find out what <expression> is. 

Since the interpretation of <expression> depends entirely on the system in which the 
program is executing, we cannot say much more about SWI here. However, as practical 
programs need to use operating system functions, the examples in later chapters will use a 

ARM Assembly Language Programming - Chapter 3 - The Instruction Set

35 of 37



'standard' set that you could reasonably expect. Two of the most important ones are called 
WriteC and ReadC. The former sends the character in the bottom byte of R0 to the screen, 
and the latter reads a character from the keyboard and returns it in the bottom byte of R0. 

Note: The code in the example above will be executed in SVC mode, so the accesses to R13 
and R14 are actually to R13_SVC and R14_SVC. Thus the user's versions of these registers 
do not have to be saved. 

3.7 Instruction timings 

It is informative to know how quickly you can expect instructions to execute. This section 
gives the timing of all of the ARM instructions. The times are expressed in terms of 'cycles'. 
A cycle is one tick of the crystal oscillator clock which drives the ARM. In fact there are 
three types of cycles, called sequential, non-sequential and internal.  

Sequential (s) cycles are those used to access memory locations in sequential order. For 
example, when the ARM is executing a series of group one instructions with no 
interruption from branches and load/store operations, sequential cycles will be used. 

Non-sequential (n) cycles are those used to access external memory when non-consecutive 
locations are required. For example, the first instruction to be loaded after a branch 
instruction will use an n-cycle. 

Internal (i) cycles are those used when the ARM is not accessing memory at all, but 
performing some internal operation. 

On a typical ARM, the clock speed is 8MHz (eight million cycles a second). S cycles last 
125 nanoseconds for RAM and 250ns for ROM. All n-cycles are 250ns. All i-cycles are 
125ns in duration. 

Instructions which are skipped due to the condition failing always execute in 1s cycle. 

Group one 

MOV, ADD etc. 1 s-cycle. If <rhs> contains a shift count in a register (i.e. not an immediate 
shift), add 1 s-cycle. If <dest> is R15, add 1 s + 1 n-cycle. 

Group one A 

MUL, MLA. 1 s + 16 i- cycles worst-case. 

Group two 

LDR. 1 s + 1 n + 1 i-cycle. If <dest> is R15, add 1 s + 1n-cycle. 
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STR. 2 n-cycles. 

Group three 

LDM. (regs-1) s + 1 n + 1 i-cycle. Regs is the number of registers loaded. Add 1 s + 1 n-cycles 
if R15 is loaded. 

STM. 2 n + (regs-1) s-cycles. 

Group four 

B, BL. 2 s + 1 n-cycles. 

Group five 

SWI. 2 s + 1 n-cycles. 

From these timings you can see that when the ARM executes several group one 
instructions in sequence, it does so at a rate of eight million a second. The overhead of 
calling and returning from a subroutine is 3 s+1 n-cycles, or 0.525 microseconds if the 
return address is stored, or 2 s+5 n-cycles, or 1.5µs if the return address is stacked. 

A multiply by zero or one takes 125ns. A worst-case multiply takes 2.125µs. Saving eight 
registers on the stack takes 7 s + 2 n-cycles, or 1.375µs. Loading them back, if one of them is 
the PC, takes 1.75 µ6s. 
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